Search results for " piezoelectric"

showing 10 items of 32 documents

Active repair technology applied to delaminated composite structures

2009

The main target of the present paper is represented by the fracture mechanics charac-terization of delaminated composite structures actively repaired through piezoelectric patches. A boundary element code, formulated for anisotropic piezoelectric solids, including, as limiting case, the applicability to linear elastic anisotropic materials has been then imple-mented. The modeling of the delaminated composite structures as well as of the assembled structures, made of the damaged components and the patches, has been achieved through the multidomain technique. Moreover, to take into account for the adhesive layer between the host structures and the piezoelectric patches, a "spring-model" has b…

Active Repair Technology Piezoelectric Patch Boundary Element Method Multidomain Technique Spring ModelSettore ICAR/04 - Strade Ferrovie Ed Aeroporti
researchProduct

BE contact analysis of delamination cracks actively repaired trhough piezoelectric active patches

2009

Active Repair Piezoelectric Materials Boundary Element Method Delamination Cracks Friction
researchProduct

Analysis of piezoelectric active patches performances by boundary element techniques

2008

This paper presents the analysis of active piezoelectric patches for cracked structures by Boundary Element Method. A two dimensional boundary integral formulation based on the multidomain technique is used to model cracks and to assemble the multi-layered piezoelectric patches to the host damaged structures. The fracture mechanics behavior of the repaired structures is analyzed for both perfect and imperfect interface between patches and host beams. The imperfect interface, representing the adhesive between two different layers, is modeled by using a “Spring Model” that involves linear relationships between the interface tractions, in normal and tangential directions, and the respective di…

Active Repair Piezoelectric Materials Boundary Element Method Imperfect BondingSettore ING-IND/04 - Costruzioni E Strutture Aerospaziali
researchProduct

Evidence of noncentrosymmetry of human tooth hydroxyapatite crystals

2014

Herein, we investigate human single hydroxyapatite crystals (enamel and dentine) by convergent-beam electron diffraction (CBED) and automated electron-diffraction tomography (ADT). The CBED pattern shows the absence of the mirror plane perpendicular to the c axis leading to the P63 space group instead of the P63 /m space group considered for larger-scale crystals, this is confirmed by ADT. This experimental evidence is of prime importance for understanding the morphogenesis and the architectural organization of calcified tissues.

AdultMaleatomic structuresCatalysisX-Ray DiffractionHuman toothmedicineHydroxidesHumansDental Enamelatomic structures; biomineralization; human tooth crystals; noncentrosymmetry; piezoelectricityEnamel paintpiezoelectricityChemistryOrganic ChemistrySpectrometry X-Ray EmissionGeneral Chemistrybiomineralizationnoncentrosymmetrystomatognathic diseasesCrystallographymedicine.anatomical_structureDurapatiteElectron diffractionvisual_artDentinvisual_art.visual_art_mediumNanoparticleshuman tooth crystalsFemaleMirror plane
researchProduct

Application of dual boundary element method in active sensing

2013

In this paper, a boundary element method (BEM) for the dynamic analysis of 3D solid structures with bonded piezoelectric transducers is presented. The host structure is modelled with BEM and the piezoelectric transducers are formulated using a 3D semi-analytical finite element approach. The elastodynamic analysis of the entire structure is carried out in Laplace domain and the response in time domain is obtained by inverse Laplace transform. The BEM is validated against established finite element method (FEM).

Boundary element method Structural health monitoring Piezoelectric transducerSettore ING-IND/04 - Costruzioni E Strutture Aerospaziali
researchProduct

Comparison among different rainfall energy harvesting structures

2018

In this paper, an experimental comparison between different rainfall harvesting devices through the study of the electrical rectifying circuit is proposed. In more detail, three harvesting structures are considered: the cantilever, the bridge and the floating circle. Different waveforms were acquired and discussed. The processed data were compared in order to suggest the best choice for the rectifying circuit, from the simplest one to that most frequently endorsed in the technical literature.

CantileverComputer science020209 energyHardware_PERFORMANCEANDRELIABILITY02 engineering and technologylcsh:TechnologyEnergy harvesterlcsh:ChemistryEngineering (all)Hardware_INTEGRATEDCIRCUITS0202 electrical engineering electronic engineering information engineeringElectronic engineeringWaveformGeneral Materials ScienceRectifying circuitlcsh:QH301-705.5InstrumentationFluid Flow and Transfer ProcessesEnergy harvester; Piezoelectric effect; Rectifying circuit; Materials Science (all); Instrumentation; Engineering (all); Process Chemistry and Technology; Computer Science Applications1707 Computer Vision and Pattern Recognition; Fluid Flow and Transfer Processeslcsh:TProcess Chemistry and TechnologyGeneral EngineeringEnergy harvesterComputer Science Applications1707 Computer Vision and Pattern RecognitionTechnical literaturelcsh:QC1-999Computer Science ApplicationsSettore ING-IND/31 - Elettrotecnicalcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Materials Science (all)lcsh:Engineering (General). Civil engineering (General)Energy harvestinglcsh:PhysicsPiezoelectric effectHardware_LOGICDESIGN
researchProduct

A Strain Sensing Structural Health Monitoring System for Delaminated Composite Structures

2012

Structural Health Monitoring (SHM) for composite materials is becoming a primary task due to their extended use in safety critical applications. Different methods, based on the use of piezoelectric transducers as well as of fiber optics, has been successfully proposed to detect and monitor damage in composite structural components with particular attention focused on delamination cracks.In the present paper a Structural Health Monitoring model, based on the use of piezoelectric sensors, already proposed by the authors for isotropic damaged components, is extended to delaminated composite structures. The dynamic behavior of the host damaged structure and the bonded piezoelectric sensors is m…

Damaged componentComposite materialMaterials scienceOptical fiberElectric sensing devicePiezoelectric sensorComposite numberDelaminated composite structureDynamic behaviorStructural healthStructure (composition) Piezoelectric transducersBoundary elementlaw.inventionSafety critical applicationlawStructural health monitoring systems Boundary element methodStructural componentDynamic loadSettore ING-IND/04 - Costruzioni E Strutture AerospazialiBoundary element methodStructural health monitoringbusiness.industryDelamination lengthIsotropyDelaminationDamaged structureGeneral MedicineStructural engineeringPiezoelectricityMechanical engineeringPrimary taskDynamic responseDelaminationDual reciprocityStrain sensingStructural health monitoringbusinessPiezoelectric sensorApplied Mechanics and Materials
researchProduct

Residual strain effects on the two-dimensional electron gas concentration of AlGaN/GaN heterostructures

2001

Ga-face AlGaN/GaN heterostructures with different sheet carrier concentrations have been studied by photoluminescence and Raman spectroscopy. Compared to bulk GaN, an energy shift of the excitonic emission lines towards higher energies was observed, indicating the presence of residual compressive strain in the GaN layer. This strain was confirmed by the shift of the E2 Raman line, from which biaxial compressive stresses ranging between 0.34 and 1.7 GPa were deduced. The spontaneous and piezoelectric polarizations for each layer of the heterostructures have been also calculated. The analysis of these quantities clarified the influence of the residual stress on the sheet electron concentratio…

Electron densityTwo-dimensional electron gasMaterials sciencePhotoluminescenceIII-V semiconductorsAluminium compounds ; Gallium compounds ; III-V semiconductors ; Wide band gap semiconductors ; Semiconductor heterojunctions ; Two-dimensional electron gas ; Electron density ; Internal stresses ; Photoluminescence ; Raman spectra ; Excitons ; Interface states ; Piezoelectric semiconductors ; Dielectric polarisationExcitonAnalytical chemistryGeneral Physics and AstronomyDielectric polarisationMolecular physicsCondensed Matter::Materials Sciencesymbols.namesakeResidual stress:FÍSICA [UNESCO]Emission spectrumPiezoelectric semiconductorsPhotoluminescenceAluminium compoundsUNESCO::FÍSICAWide-bandgap semiconductorGallium compoundsHeterojunctionInterface statesWide band gap semiconductorssymbolsExcitonsRaman spectraSemiconductor heterojunctionsRaman spectroscopyInternal stressesElectron density
researchProduct

Piezoelectric energy harvesting from raised crosswalk devices

2015

This paper presents the main characteristics of an experimental energy harvesting device that can be used to recover energy from the vehicular and pedestrian traffic. The use of a piezoelectric bender devices leads to a innovative approach to Henergy Harvesting. The study focuses on the definition and specification of a mechanical configuration able to transfer the vibration from the main box to the piezoelectric transducer. The piezoelectric devices tested is the commonly used monolithic piezoceramic material lead-zirconate-titanate (PZT). The experimental results estimate the efficiency of this device tested and identify the feasibility of their use in real world applications. The results…

EngineeringFinite element methodbusiness.industryEnergy harvestingPiezoelectricityElectric circuitTransient analysiVibrationElectric circuit; Energy harvesting; Finite element method; Piezoelectric; Transient analysis; Physics and Astronomy (all)Physics and Astronomy (all)Schema crosswalkElectronic engineeringSettore ICAR/04 - Strade Ferrovie Ed AeroportiPiezoelectricbusinessEnergy harvestingEnergy (signal processing)
researchProduct

A boundary element model for structural health monitoring using piezoelectric transducers

2013

In this paper, for the first time, the boundary element method (BEM) is used for modelling smart structures instrumented with piezoelectric actuators and sensors. The host structure and its cracks are formulated with the 3D dual boundary element method (DBEM), and the modelling of the piezoelectric transducers implements a 3D semi-analytical finite element approach. The elastodynamic analysis of the structure is performed in the Laplace domain and the time history is obtained by inverse Laplace transform. The sensor signals obtained from BEM simulations show excellent agreement with those from finite element modelling simulations and experiments. This work provides an alternative methodolog…

EngineeringLaplace transformbusiness.industryAcousticsInverse Laplace transformStructural engineeringCondensed Matter PhysicsBoundary knot methodPiezoelectricityAtomic and Molecular Physics and OpticsFinite element methodboundary element method smart structure piezoelectric transducer structural health monitoring crack detection wave propagationMechanics of MaterialsSignal ProcessingGeneral Materials ScienceStructural health monitoringElectrical and Electronic EngineeringbusinessActuatorSettore ING-IND/04 - Costruzioni E Strutture AerospazialiBoundary element methodCivil and Structural Engineering
researchProduct